Какая теплопроводность у бумаги? - VITC33.RU

Какая теплопроводность у бумаги?

Теплопроводность материалов. Как считают? Сравнительная таблица на сайте Недвио

  • Недвижимость
  • Строительство
  • Ремонт
  • Участок и Сад
  • О загородной жизни
  • Вопросы-Ответы
    • Интерактивная кадастровая карта
    • О проекте Недвио
    • Реклама на Nedvio.com

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Теплопроводность [Вт / (м · К)]

Войлок, маты и плиты из минеральной ваты

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Н ержавеющая сталь

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Теплопроводность: несгораемые нить, бумага и полиэтилен

В сегодняшнем эксперименте мы изучим такое физические явление, как теплопроводность. Теплопроводность – свойство вещества “проводить тепло”. Из обыденного опыта мы знаем, что материалы делятся на те, которые хорошо проводят тепло, и те, которые плохо. К первым, например, относится дерево (по этой причине из него строят дома – тепло сохраняется внутри). Ко второй группе – металлы (вспомним ложечку, которую опускают в горячий чай, чтобы остудить его).

Используем теплопроводность для того, чтобы сделать несгораемые нитки, бумагу и полиэтилен. Эти материалы выбраны по одной простой причине: все они легко загораются. В этом легко убедиться, если поднести их к пламени свечи (см. видео. Внимание! Соблюдайте правила пожарной безопасности!).

Однако если в процессе нагревания они, например, будут плотно контактировать к металлом, то произойдет следующее: избыток тепла будет быстро распределяться по объему металлу, не приводя к сколько-нибудь заметному повышению температуры. Убедимся в этом на практике. Для этого возьмем толстый металлический стержень или трубку, обмотает его нитками или бумажной полоской и внесем в пламя свечи. Максимум, что мы получим – закопченную поверхность. А сами нитка или бумага (даже после продолжительного нагревания) не теряют своей прочности. Для этого достаточно потянуть за их концы.

Наиболее впечатляющим в этой серии опытов выглядит несгорающий полиэтилен. Для этого достаточно взять любой полиэтиленовый пакет, налить в него воды, и внести в пламя свечи. Кажется, что полиэтилен сейчас проплавится, и вся вода выльется из пакета. Однако в реальности ничего подобного не происходит: вода эффективно отбирает тепло от полиэтилена.

Домашнее задание:

Посмотрим внимательно на таблицу коэффициентов теплопроводности:

Мы видим, что металлы действительно имеют высокие коэффициенты теплопроводности. Так, например, серебро – 430, а железо – 92. А вот вода – всего 0.6, что всего в 4 раза выше, чем у дерева. Означает ли это, что наши выводы в третьем опыте (нагревание воды в полиэтиленовом пакете) были неверными? Почему вода все-таки так эффективно отводит тепло от полиэтилена? За правильный ответ – бонус 20 рублей на ваш сотовый телефон.

Читайте также  Почему падает давление газа?

  • А. Шор 26 июля 2010, 20:15

    Достаточно банально, но наверное то, что у полиэтилена в 2 раза меньшая теплопроводность

  • Владимир 27 июля 2010, 01:01

    Вода отводит тепло не путем теплопроводности, а перемещаясь и перемешиваясь.

  • Карелин Григорий 27 июля 2010, 05:32

    Наверное, все дело в диффузии. Нагретая вода поднимается вверх, уступая место холодной.

  • Тарзанов Андрей 27 июля 2010, 06:22

    Мне думается, что в данном эксперименте упомянуты не все детали. В частности не нужно забывать про теплоёмкость. Например, для воды она приблизительно в 8 раз больше, чем для железа

  • Administrator 27 июля 2010, 06:27

    Владимир, Григорий, это называется конвекцией. Нагретая жидкость поднимается вверх, эффективно унося тепло от места контакта с пламенем.

  • Administrator 27 июля 2010, 13:02

    Андрей, на мой взгляд, теплоемкость может сыграть роль, только если:

1. держать долго над сильным пламенем
2. взять вещество с низкой теплоемкостью (высокой скоростью нагрева)

В обоих случаях, повреждение нити или бумаги произойдет не от огня, а от раскаленной основы, на которую они намотаны.

В случае же с полиэтиленом, думаю, можно довести воду до сильного нагрева, так что она сама начнет разрушать полиэтилен. Но всё это уже какие–то крайности.

Тарзанов Андрей 27 июля 2010, 13:42

А в опыте как долго держали пакет над огнём, а бумагу и нитки на металлическом стержне? А п/э на стержень пробовали наматывать?

Помнится, ещё у Перельмана в «Занимательной Физике» описывались опыты с ниткой и ключом, бумажной кюветой для нагрева воды. Вот про полиэтилен у него не было.

Administrator 27 июля 2010, 17:47

Андрей, каждый опыт – секунд 40–50, дальше неинтересно. В самом ролике это место ускорено в 1.5 раза. С полиэтиленом на стержне, думаю, то же самое получится.

Кстати, да, исходный опыт взят у Перельмана, с водой в полиэтиленовом мешке – это уже моя импровизация.

Тарзанов Андрей 28 июля 2010, 13:05

Интересно было бы (хотя бы) прикинуть количественно, какие энергии циркулируют в нашем опыте.
Кто–нибудь возьмётся оценить количество Джоулей, «вырабатываемых» свечой?
У меня получилось что–то порядка единиц кДж/мин (а именно 4.4)
Как прикидывал.

Свечка парафиновая (вопрос какой парафин. ) диаметром 1 см
Плотность парафина

900 кг/м 3 .
Теплоёмкость парафина

2.2 кДж/(кг*град)
Теплота сгорания парафина

50000 КДж/кг
Теплота плавления парафина

За четыре минуты сгорело 5 мм свечи.
Объемом 3.14*0.5*0.5*0.5 = 392.5 мм 3 = 3,925*10 –7 м 3 .
весом 3.925*10 –7 *900 = 3,53*10 –4 кг (0,35 г)

при сгорании этой массы выделяется
3.53*10 –4 * 50000 = 17,7 кДж тепла

Будем считать что при горении свечи часть энергии пламени тратится на разогрев парафина до температуры плавления парафина (около 50 градусов по Цельсию), ещё часть – на переход в жидкое состояние, что составит
3.53*10 –4 *(2.2*(50–22)+150) = 0,0746 кДж
гым. не так уж и много по сравнению с теплотой горения.
итак, за четыре минуты насчитали

17.6 кДж, тогда в одну минуту получается 4.4 кДж
т.е. порядка единиц килоДжоулей в минуту.

Тарзанов Андрей 28 июля 2010, 13:37

Теплопроводность полиэтилена

0.4 Вт/(м*град).
Толщина плёнки

100 микрон или 10 –4 м
разница температур

1200 градусов
т. е. полиэтилен в наших условиях может пропускать поток теплоты мощностью порядка
0.4*10 –4 *1200=0,048 Вт = 0,048 Дж/с = 2,88 Дж/мин
А мы подводим

4 кДж/мин. Т. е., учитывая приближённость наших вычислений, полиэтилен может справиться с потоком энергии, идущим через него от свечи.
Значит вопрос в том, чтобы этот поток эффективно снять с «холодной» стороны. Как показывает опыт, вода это может сделать.
А что скажут цифры? Теплоёмкость воды имеет значение в районе 4 кДж/(кг*град). Т. е. чтобы повысить температуру одного килограмма воды на один градус, требуется подвести 4 кДж энергии. А коэффициент теплопроводности составляет

0.6Вт/(м*град). получается, что приблизительные расчёты и результаты эксперимента неплохо коррелируют.

Administrator 28 июля 2010, 20:14

Расчеты сильны. Ряд моментов:

1. Подправил форматирование, а то тяжко читать формулы

2. Количество тепла, которое тратится на плавление парафина, можно не учитывать по сравнению с теплом, выделяемым при горении (разница удельных теплот равна 330, т. е. можно сразу пренебрегать)

3. Про полиэтилен не понял. Расчеты точно верны? Получается, полиэтилен способен проводить 2.88 Дж/мин, а мы подводим почти в тысячу раз больше. Что–то здесь не так.

  • Тарзанов Андрей 29 июля 2010, 03:26

    упс.. дейстивтельно «кило» просмотрел..
    надо подумать.

  • Тарзанов Андрей 29 июля 2010, 03:36

    Сейчас уточнил толщину полиэтиленовых пакетов. она составляет порядка десятков, а не сотен микрон, значит нестыковку снизили уже на один порядок.

  • Тарзанов Андрей 29 июля 2010, 03:47

    Ещё такой момент. Далеко не вся энергия сгорающего парафина «пытается пройти» через полиэтилен. Часть уходит в разных направлениях в виде излучения, часть посредством горячего воздуха, обтекающего испытуемых объект, нагревает воздух. Числено оценить соотношение этих частей я не возьмусь, пожалуй.
    И ещё, провёл собственнй эксперемнт. Пакет не прогорел, то течь дал.

  • Administrator 29 июля 2010, 11:19

    Я брал тонкий полиэтилен. На ощупь он какой–то жесткий.

    По поводу потока тепла посчитал сам:

    P = x*S*(delta_T)/h = 0.4*1м 2 *1200/(3*10 –5 м)

    то есть, через один квадратный метр полиэтилена толщиной 30 микрон может проходить 10 7 Вт. Соответственно, через один квадратный сантиметр – 10 3 Вт. Учитывая, что площадь контакта с пламенем – около 2 см 2 , видим, что за секунду полиэтилен может пропускать 20 кДж. Это заведомо больше, чем приходит от пламени свечи.

    Таблица плотности, теплопроводности и паропроницаемости различных строительных материалов

    В таблице приведены средние значения для материалов различных производителей.

    Материал Плотность, кг/м 3 Теплопроводность, Вт/(м*С) Паропроницаемость, Эквивалентная1 (при сопротивлении теплопередаче = 4,2м2*С/Вт) толщина, м Эквивалентная2 (при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м
    Мг/(м*ч*Па)
    Железобетон 2500 1,69 0.03 7,10 0.048
    Бетон 2400 1,59 0.03 6,34 0.048
    Керамзитобетон 1800 0.66 0.09 2,77 0.144
    Керамзитобетон 500 0.14 0.30 0.59 0.48
    Кирпич красный глиняный 1800 0.56 0.11 2,35 0.176
    Кирпич, силикатный 1800 0.70 0.11 2,94 0.176
    Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1,72 0.224
    Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1,47 0.272
    Пенобетон 1000 0.29 0.11 1,22 0.176
    Пенобетон 300 0.08 0.26 0.34 0.416
    Гранит 2800 3,49 0.008 14,6 0.013
    Мрамор 2800 2,91 0.008 12,2 0.013
    Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096
    Дуб поперек волокон 700 0.10 0.05 0.42 0.08
    Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512
    Дуб вдоль волокон 700 0.23 0.30 0.96 0.48
    Фанера клееная 600 0.12 0.02 0.50 0.032
    ДСП, ОСП 1000 0.15 0.12 0.63 0.192
    ПАКЛЯ 150 0.05 0.49 0.21 0.784
    Гипсокартон 800 0.15 0.075 0.63 0.12
    Картон облицовочный 1000 0.18 0.06 0.75 0.096
    Минплита 200 0.070 0.49 0.30 0.784
    Минплита 100 0.056 0.56 0.23 0.896
    Минплита 50 0.048 0.60 0.20 0.96
    ПЕНОПОЛИСТИРОЛ ЭКСТРУДИРОВАННЫЙ 35 0.031 0.013 0.13 0.021
    ПЕНОПОЛИСТИРОЛ ЭКСТРУДИРОВАННЫЙ 45 0.036 0.013 0.13 0.021
    Пенопласт 150 0.05 0.05 0.21 0.08
    Пенопласт 100 0.041 0.05 0.17 0.08
    Пенопласт 40 0.038 0.05 0.16 0.08
    Пенопласт ПВХ 125 0.052 0.23 0.22 0.368
    ПЕНОПОЛИУРЕТАН 80 0.041 0.05 0.17 0.08
    ПЕНОПОЛИУРЕТАН 60 0.035 0.0 0.15 0.08
    ПЕНОПОЛИУРЕТАН 40 0.029 0.05 0.12 0.08
    ПЕНОПОЛИУРЕТАН 30 0.020 0.05 0.09 0.08
    Керамзит 800 0.18 0.21 0.75 0.336
    Керамзит 200 0.10 0.26 0.42 0.416
    Песок 1600 0.35 0.17 1,47 0.272
    Пеностекло 400 0.11 0.02 0.46 0.032
    Пеностекло 200 0.07 0.03 0.30 0.048
    АЦП 1800 0.35 0.03 1,47 0.048
    Битум 1400 0.27 0.008 1,13 0.013
    ПОЛИУРЕТАНОВАЯ МАСТИКА 1400 0.25 0.00023 1,05 0.00036
    Рубероид, пергамин 600 0.17 0.001 0.71 0.0016
    Полиэтилен 1500 0.30 0.00002 1,26 0.000032
    Асфальтобетон 2100 1,05 0.008 4,41 0.0128
    Линолеум 1600 0.33 0.002 1,38 0.0032
    Сталь 7850 58 243
    Алюминий 2600 221 928
    Медь 8500 407 1709
    Стекло 2500 0.76 3,19

    1 — сопротивление теплопередаче ограждающих конструкций жилых зданий в Московском регионе, строительство которых начинается с 1 января 2000 года.

    2 — сопротивление паропроницанию внутреннего слоя стены двухслойной стены помещения с сухим или нормальным режимом, свыше которого не требуется определять сопротивление паропроницанию ограждающей конструкции.

    Коэффициент теплопроводности материалов

    Теплопроводность и коэффициент теплопроводности. Что это такое.

    Теплопроводность.

    Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

    Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

    На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

    Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

    Коэффициент теплопроводности.

    Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

    Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

    В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

    Коэффициент теплопроводности материалов.

    Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

    Коэффициент теплопроводности материалов

    Что такое теплопроводность и термическое сопротивление

    При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

    Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

    Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

    Таблица теплопроводности теплоизоляционных материалов

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

    Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

    При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

    Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

    Таблица теплопроводности строительных материалов

    Сравнивают самые разные материалы

    Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

    Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

    Название Коэффициент теплопроводности Название Коэффициент теплопроводности
    Бронза 22-105 Алюминий 202-236
    Медь 282-390 Латунь 97-111
    Серебро 429 Железо 92
    Олово 67 Сталь 47
    Золото 318

    Как рассчитать толщину стен

    Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

    Термическое сопротивление ограждающих
    конструкций для регионов России

    Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

    Расчет толщины стены, толщины утеплителя, отделочных слоев

    Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

    Формула расчета теплового сопротивления

    R — термическое сопротивление;

    p — толщина слоя в метрах;

    k — коэффициент теплопроводности.

    Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

    Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

    Пример расчета толщины утеплителя

    Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

    1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
    2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

    Теплопроводность строительных материалов, их плотность и теплоемкость

    Приведена обширная таблица теплопроводности строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

    Следует обратить внимание на величину теплопроводности строительных материалов в таблице, поскольку эта характеристика, наряду с их плотностью, является наиболее важной. Особенно теплопроводность важна для строительных материалов, применяемых в качестве теплоизоляции при утеплении строительных конструкций.

    Теплопроводность строительных материалов существенно зависит от их пористости и плотности. Чем меньше плотность, тем ниже теплопроводность материала, поэтому низкая теплопроводность свойственна пористым и легким материалам (значения плотности строительных материалов, металлов и сплавов, продуктов и других веществ вы также сможете найти в подробной таблице плотности).

    Например, в нашей таблице теплопроводности материалов и утеплителей можно выделить следующие строительные материалы с низким показателем коэффициента теплопроводности — это аэрогель (от 0,014 Вт/(м·град)), стекловата, пенополистирол пеноплэкс и вспененный каучук (от 0,03 Вт/(м·град)), теплоизоляция МБОР (от 0,038 Вт/(м·град)), газобетон и пенобетон (от 0,08 Вт/(м·град)).

    Теплопроводность строительных материалов — Таблица!

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Какая в строй-материалах теплопроводность.

    Коэффициент теплопроводности строительных материалов — таблица!

    Это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах.

    Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла.

    Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.

    Таблица теплопроводности строительных материалов.

    Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

    Расшифровка таблицы.

    Выше приведена обширная таблица в которой указана теплопроводность тех или иних строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

    Просто о сложном: сравнительная таблица теплопроводности строительных материалов

    Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

    Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

    Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

    Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

    Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

    Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

    Основные параметры, от которых зависит величина теплопроводности

    Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

      Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

    Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • «Холодно, холодно и сыро. Не пойму, что же в нас остыло. » Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

    Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Таблица теплопроводности изоляционных материалов для бетонных полов

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: