Какое давление создает вентилятор? - VITC33.RU

Какое давление создает вентилятор?

Чем отличаются вентиляторы низкого давления от высокого давления?

Каждый человек нуждается в постоянном потоке чистого свежего воздуха. Однако многие помещения и предприятия имеют спёртый, затхлый воздух, что может негативно отразиться на общем самочувствии и снизить работоспособность. Чтобы этого не произошло, важно не допускать в воздухе наличия пыли, дыма, повышенной влажности и углекислого газа. Поэтому подбираются специальные установки, очищающие воздух. Для их правильного выбора необходимо знать давление вентиляторов, что это и разбираться в параметрах приборов.

Что такое давление вентиляторов

Одним из самых главных параметров любого вентилятора является его напор. Он считается главным показателем давления потока воздуха. Благодаря ему, воздух может проходить сквозь воздуховоды, тройники, решетки и другие конструкции. Он может быть нескольких видов:

  • Статический – это когда воздух после вентилятора имеет давление намного выше, чем до вентилятора. Разность такого давления и называется статическим напором.
  • Динамический – после вентилятора движение воздуха идёт с определённой скоростью. Таким скоростным напором считается давление воздуха, которое оно могло бы иметь, если бы его поток резко остановился.
  • Полный – это все виды давления вместе взятые.

О том, какое у вентилятора будет давление, говорит его тип конструкции. Однако самыми слабыми считаются осевые модели. Для их правильного подбора лучше знать отличия давления вентиляторов низкого от высокого.

Характеристики вентиляторов низкого давления

Центробежные вентиляторы низкого давления изготавливаются из алюминия и предназначены, чтобы перемещать не только воздух, но и пары, технические газы и смеси разных газов. Они обладают производительностью до 100 м³/мин и давлением до 2,2 кПа. При этом температура рабочего газа должна быть более -20°C и в некоторых случаях достигает +180°C. Вентиляторы могут быть разных конструкций исполнения, в зависимости от их назначения. Добротные вентиляторы низкого давления купить https://energo1.com/catalog/ventilyatsionnoe_oborudovanie/ventilyatory_nizkogo_davleniya/ можно также через интернет. Они необходимы, чтобы:

  • охлаждать технику;
  • улучшить тягу в дымоходах;
  • подавать воздух в угольные или газовые печи;
  • проводить вентиляцию электроприборов;
  • исполнять роль дымососов;
  • избавляет от отработанных паров и газов.

Такие модели очень удобны и долговечны. Большим плюсом является их умеренный уровень шума и вибраций, при котором они остаются эффективными.

Вентилятор высокого давления: характеристики

Чаще всего именно такие устройства используют для перемещения газовых или воздушных потоков. Их широко применяют промышленных или бытовых установках, чтобы создать вентиляцию помещений. Вентиляторы выбирают в зависимости от технических параметров таких как:

  • давление;
  • количество лопаток рабочего класса и их направление;
  • скорость вращения;
  • производительность;
  • модель электродвигателя.

Вентиляторы высокого давления создают от 3000 до 12000 Па. Если конструкция превышает эти показатели, то её уже относят к компрессорам. Однако эти параметры могут отличаться у разных производителей и нужно подбирать оборудование согласно своим требованиям, зная параметры промышленных вентиляторов.

Отличие вентиляторов низкого и высокого давления

Чтобы поддерживать нужные параметры воздуха, необходимо применять специальные вентиляторы, расположенные в установках подачи воздушных смесей. Динамическое давление воздуха создают лопасти, вращающиеся в спиральном кожухе. Его напор зависит от типа конструкции.

Вентиляторы низкого давления могут нагнетать давление до 1000 МПа. Они наиболее распространены и используются в климатических системах, расположенных в крупных организациях, цехах и многоквартирных домах. Такие модели имеют свои преимущества, например:

  • быстрая установка;
  • неприхотливость в уходе;
  • надёжность;
  • долговечность;
  • безопасность;
  • небольшая цена.

Область использования оборудования может быть ещё шире, если улучшить некоторые функции, разбираясь в характеристиках вентиляторов низкого давления.

Вентиляторы высокого давления – также широко распространены в климатических системах, но с более длинными воздуховодами, которые могут превышать 100 м. С их помощью создается мощный поток воздуха, благодаря чему, технику можно использовать даже в сложных условиях, имеющих серьёзное сопротивление действующих устройств. К подобным приборам предъявляются более повышенные стандарты качества и безопасности. Если необходимо выполнить специфические действия, то вентиляторы могут быть дополнены виброизоляторами, различными вставками и направляющими аппаратами.

Какой вентилятор выбрать низкого или высокого давления

Выбирая вентилятор, главное — учитывать среду, где он будет установлен и какова ожидаемая нагрузка на устройство. Обычное устройство необходимо, чтобы вводить и выводить потоки воздуха в помещении не содержащие вредных компонентов, пыли и других веществ. В случае необходимости движения воздуха с твердыми примесями, понадобятся специальные пылевые взрывобезопасные устройства устойчивые к коррозии. Имеет значение и производительность прибора. От этого зависит количество воздуха, которое он способен переместить. Размышляя о том, какой промышленный вентилятор выбрать, следует учитывать для чего его будут применять.

Вентиляторы высокого давления в основном нужны для обеспечения движения воздуха в печи, вагранке, шахтах, системах зерновых элеваторов и установках пневмотранспорта эжекционного типа. Однако температура воздуха не должна превышать 80°C, а его запыленность 100 мг/м³. Вентиляторы низкого давления уже необходимы для частных и многоквартирных домов. Они отлично выполняют кондиционирование воздуха. При этом их мощность в среднем составляет всего 30 кВт. Для большего эффекта устройства используются вместе с дымоудалением и воздуходувками.

Разбираясь в особенностях промышленных вентиляторов проще сделать правильный выбор. Это позволит очистить помещение от вредных примесей и обеспечит потоком свежего воздуха. Если же есть сомнения в правильности подбора модели, лучше проконсультироваться у специалистов.

Какое давление создает вентилятор?

Вентиляция — это регулируемый воздухообмен, осуществляемый с целью создания в помещениях жилых, общественных и промышленных зданий воздушной среды, благоприятной для здоровья и трудовой деятельности человека, а также для технологических целей. Вентиляционные системы — совокупность технических устройств, обеспечивающих воздухообмен. Побудителем движения воздуха в таких системах является вентилятор. Вентилятор — сложное техническое устройство, преобразующее кинетическую энергию вращающегося колеса в кинетическую и потенциальную энергии перемещаемого объема воздуха. Существует большое многообразие типов вентиляторов, однако в вентсистемах используется всего несколько из них. От выбора типа вентилятора и соответствия поставленной задаче зависят его габариты, потребляемая мощность, технические характеристики, а также шум и некоторые другие свойства вентсистемы.

Типы вентиляторов, используемых в системах вентиляции

Вентиляторы – лопаточные машины, предназначенные для перемещения воздуха или других газов. Вентиляторы условно делятся по развиваемому давлению на вентиляторы:

-среднего давления от 1000Па до 3000Па;

-высокого давления — свыше 3000Па.

Как правило, давление, развиваемое вентиляторами, работающими в вентиляционных системах, не превышает 2000Па. В системах вентиляции и кондиционирования используются следующие типы вентиляторов:

Схемы осевых вентиляторов приведены на рис.1.1. В осевых вентиляторах поток воздуха входит и выходит по оси вращения колеса. Осевые вентиляторы могут состоять из одного колеса (рис. 1.1а), колеса и спрямляющего аппарата (рис.1.1б), входного направляющего аппарата и колеса (рис.1.1в), входного направляющего аппарата, колеса и спрямляющего аппарата (рис.1.1г). Электродвигатель может быть расположен как перед колесом (рис.1.1а), так и за колесом (рис.1.1б), причем аэродинамические характеристики вентиляторов, имеющих одинаковые колеса, будут при этом приблизительно одинаковыми.

Рис.1.1 Схемы осевых вентиляторов:

а) К-колесо; б) К+СА -колесо и спрямляющий аппарат; в) ВНА+К –входной направляющий аппарат и колесо, г) ВНА+К+СА -входной направляющий аппарат, колесо и спрямляющий аппарат; 1-входной коллектор, 2-лопатки колеса, 3-втулка колеса, 4-электродвигатель, 5-корпус, 6,8-спрямляющий аппарат, 7-входной направляющий аппарат

Читайте также  Как отказаться от газа в квартире?

Остаточная закрутка потока является источником потерь, кроме того может быть причиной дополнительных потерь в элементах, сопрягающих вентилятор с сетью на выходе. Для уменьшения закрутки за колесом используется спрямляющий аппарат. При равных частотах вращения и диаметрах колес, осевые вентиляторы создают в 2-3 раза меньшее давление, но имеют большую производительность, чем радиальные вентиляторы, поэтому в вентиляционных системах они используются в основном для перемещения больших объемов воздуха – на вытяжке, для создания противодымного подпора и т. д.

Осевые вентиляторы могут быть одноступенчатыми, двухступенчатыми и многоступенчатыми. В многоступенчатом вентиляторе, созданном на базе нескольких одноступенчатых, происхо-дит увеличение давления примерно пропорционально числу ступеней при прежней производительности. Сущест-вуют также схемы со встречным вращением и вентиляторы с меридио-нальным ускорением потока .

В радиальных колесах поток входит по оси вращения колеса, а выходит в радиальной плоскости. Спиральный корпус служит для преобразования потока на выходе из колеса и дополнительного повышения давления вентилятора. Наиболее широко применяются два типа радиальных колес: колеса с лопатками загнутыми назад и с лопатками загнутыми вперед. Радиальные вентиляторы развивают большее давление, по сравнению с осевыми вентиляторами, так как единице объема перемещаемого воздуха сообщается энергия при переходе от радиуса входа к радиусу выхода колеса.

Радиальный вентилятор имеет два входных отверстия и общее выходное и представляет как бы объединение двух зеркальных вентиляторов в спиральных корпусах. Такого типа вентиляторы имеют приблизительно удвоенную производительность (при том же давлении, что и единичный вентилятор). Многоступенчатые радиальные вентиляторы в системах вентиляции встречаются крайне редко. Среди рассматриваемых типов вентиляторов радиальные – наиболее используемые в вентиляционных системах.

В диаметральном вентиляторе поток входит в колесо в диаметральном направлении (перпендикулярно оси вращения колеса), и выходит также в диаметральном направлении. Угол между входом и выходом потока может быть разным, существуют также вентиляторы с различными углами выхода потока, вплоть до 180°. В диаметральных вентиляторах используются радиальные колеса с вперед загнутыми лопатками, близкие к тем, что используются в радиальных вентиляторах. Отличительной особенностью диаметральных вентиляторов является возможность увеличения длины колеса (осевой протяженности), что дает возможность увеличивать производительность вентилятора (при соответствующем увеличении мощности привода). Несмотря на очевидные компоновочные преимущества, диаметральные вентиляторы не нашли широкого применения в вентсистемах. Это связано с относительно малой аэродинамической эффективностью этих вентиляторов. В основном они используются в маломощных завесах, хотя известны попытки применения диаметральных вентиляторов в воздухоприточных установках.Основные свойства вентилятора, как устройства предназначенного для перемещения воздуха, принято оценивать по его аэродинамическим параметрам: давлению, производительности и потребляемой мощности при нормальных атмосферных условиях, а также коэффициенту полезного действия (КПД).

-давления вентилятора: статическое, полное, динамическое измеряются в Па (1 Па

-производительность вентилятора измеряется в м3/час, м3/с;

-потребляемая мощность вентилятора измеряется в Вт, кВт.

Полное давление вентилятора равно разности полных давлений потока за вентилятором и перед ним:

Здесь: P01 — осредненное по входному сечению, P02 -осредненное по выходному сечению полное давление потока.

Статическое давление вентилятора Psv равно разности полного давления Pv и динамического давления вентилятора Pdv:

Динамическое давление вентилятора Pdv определяется по среднерасходной скорости Vвых-вент выхода потока из вентилятора:

Скорость выхода потока из вентилятора (один из способов осреднения):

где Fвых — площадь поперечного сечения выхода потока из вентилятора; Q–производительность вентилятора.

Полный и статический КПД вентилятора:

где N — мощность, потребляемая вентилятором.

Nэл сеть – мощность, пот-ребляемая вентилятором из электрической сети: Nэл сеть= N/ (ηּ ηэл двиг),

где ηэл двиг – КПД электродвигателя.

В данной статье использованы материалы следующих изданий:

  1. Центробежные вентиляторы. Под ред. Т.С. Соломаховой. М., Машиностроение. 1975
  2. И.В.Брусиловский. Аэродинамика осевых вентиляторов. М., Машиностроение. 1984
  3. Проектирование и эксплуатация центробежных и осевых вентиляторов. Москва, ГОСГОРТЕХИЗДАТ. 1959
  4. Центробежные вентиляторы. Под ред. Т.С.Соломаховой. М., «Машиностроение», 1975

Какое давление создает вентилятор?

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.

Группа: Участники форума
Сообщений: 6526
Регистрация: 21.2.2008
Из: Гаага
Пользователь №: 15855

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Группа: Участники форума
Сообщений: 512
Регистрация: 17.3.2008
Из: г. Ухта
Пользователь №: 16591

Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.

Группа: Участники форума
Сообщений: 6526
Регистрация: 21.2.2008
Из: Гаага
Пользователь №: 15855

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Группа: Участники форума
Сообщений: 512
Регистрация: 17.3.2008
Из: г. Ухта
Пользователь №: 16591

Группа: Участники форума
Сообщений: 44
Регистрация: 6.2.2012
Из: Санкт-Петербург
Пользователь №: 138938

Забавляет тот факт что большинство проектировщиков повально неправильно подбирают вентиляторы, но как то всё работает

Статическое давление вентилятора — это разность (с учётом знака) статического давления до и после вентилятора.
Динамическое давление вентилятора — Это диамическое давление воздуха в сечении напорного патрубка вентилятора (зависит от скорости)
И полное давление — это как водиться сумма предыдущих двух давлений.
Вы не поверете, но есть даже КПД вентилятора по статическому давлению, и КПД по полному давлению

Теперь про сеть —
Потери давления в сети (те что вы расчитываете при аэродинамическом рассчёте) это потери статического давления. Вентилятор должен своим статическим давлением покрыть ваши потери давления.

Если бы в сети было только статическое давление, то это был бы просто сосуд под давлением, без движения воздуха. В воздуховоде должно быть динамическое давление, возникающее в результате движения воздуха. В начальном патрубке сети у вас есть какая то скорость, зная которую, вы знаете динамическое давление в этом патрубке. А прибавив это динамическое давлени к потреям давления (статике) вы получаете полное давление вашей сети. Вентилятор опять таки должен покрыть своим полным давлением полное давление вашей сети.

Вот тут и возникают большинство ошибок.
Например:
Потери давления сети 500 Па.
Вентилятор А
Статическое давление вентилятора при данном расходе 450 Па.
Полное давление 500 Па
Вентилятор Б
Статическое давление вентилятора при данном расходе 500 Па.
Полное давление 550 Па

Читайте также  Почему гремит газовая колонка?

Какой вентилятор выберете?
Как правильно заметил WasserWolf — вентилятор подобранный по статическому и динамическому давлению может отличаться на несколько типоразмеров. увы.

Кстати WasserWolf ещё одно дельную вещь сказал — вентилятор,работающий только на всасывание подбираетсятолько на статическое давление. Ибо всё динамическое давление вентилятора будет направлено не на полезную работу, а на бесполезное сотрясание воздуха после вентилятора.

Сообщение отредактировал Val_ — 25.5.2012, 15:10

Вентпортал

Пример подбора вентиляторов для системы вентиляции

Опубликовано чт, 01/27/2011 — 12:26 пользователем editor

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Тип Скорость воздуха, м/с
Магистральные воздуховоды 6,0-8,0
Боковые ответвления 4,0-5,0
Распределительные воздуховоды 1,5-2,0
Приточные решетки у потолка 1,0-3,0
Вытяжные решетки 1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

ГОСТ 10616-90 (СТ СЭВ 4483-84) Вентиляторы радиальные и осевые. Размеры и параметры

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ВЕНТИЛЯТОРЫ РАДИАЛЬНЫЕ И ОСЕВЫЕ

Radial and axial fans.

Dimensions and parameters

Срок действия с 01.01.91

1. РАЗРАБОТАН И ВНЕСЕН Министерством строительного, дорожного и коммунального машиностроения СССР

Г.С. Куликов, В.Б. Горелик, В.М. Литовка, А.Т. Пихота, А.М. Роженко, Н.И. Василенко, Т.Ю. Найденова, А.А. Пискунов, И.С. Бережная, Е.М. Жмулин, Л.А. Маслов, Т.С. Соломахова, Т.С. Фенько, А.Я. Шарипов, В.А. Спивак, М.С. Грановский, М.В. Фрадкин

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 № 591

3. Срок первой проверки — 1995 г.

периодичность проверки — 5 лет

4. Стандарт полностью соответствует СТ СЭВ 4483-84.

5. ВЗАМЕН ГОСТ 10616-73

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

2.11; 2.14; приложение

Настоящий стандарт распространяется на вентиляторы радиальные одно- и двусторонние и на осевые одно- и многоступенчатые, предназначенные для систем кондиционирования воздуха, вентиляции, а также других производственных целей, повышающие абсолютное полное давление потока не более чем в 1,2 раза и создающие полное давление до 12000 Па при плотности перемещаемой среды 1,2 кг/м.

Стандарт не распространяется на вентиляторы, встраиваемые в кондиционеры, а также в другое оборудование.

1. ОСНОВНЫЕ РАЗМЕРЫ

1.1. Размер вентилятора характеризуется его номером. За номер вентилятора принимается значение, соответствующее номинальному диаметру рабочего колеса , измеренному по внешним кромкам лопаток и выраженному в дециметрах. Например, вентилятор с =200 мм обозначается № 2, =630 мм — № 6,3 и т. д.

1.2. Номинальные диаметры рабочих колес, диаметры всасывающих отверстий радиальных (черт. 1а) и осевых (черт. 1б) вентиляторов, снабженных коллекторами, и диаметры нагнетательных отверстий осевых вентиляторов, снабженных диффузорами, следует выбирать из ряда значений, соответствующих ряду R20 ГОСТ 8032, указанных в табл. 1.

Читайте также  Какое сечение кабеля для духового шкафа?

При необходимости допускается применение ряда R80.

, мм

1.3. Вентиляторы разных номеров и конструктивных исполнений, выполненные по одной аэродинамической схеме, относятся к одному типу.

2. АЭРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ

2.1. За производительность (объемный расход) вентилятора , (м/с) принимается объемное количество газа, поступающего в вентилятор в единицу времени, отнесенное к условиям входа в вентилятор (см. приложение).

2.2. За полное давление вентилятора (Па) принимается разность абсолютных полных давлений потока при выходе из вентилятора и перед входом в него при определенной плотности газа.

2.3. За динамическое давление вентилятора (Па) принимается динамическое давление потока при выходе из вентилятора, рассчитанное по средней скорости в выходном сечении вентилятора.

2.4. За статическое давление вентилятора (Па) принимается разность его полного и динамического давления.

2.5. За мощность (кВт), потребляемую вентилятором, принимается мощность на валу вентилятора без учета потерь в подшипниках и элементах привода.

2.6. За полный КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению полного давления вентилятора на его производительность , к мощности , потребляемой вентилятором.

2.7. За статический КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению статического давления вентилятора на его производительность , к потребляемой мощности .

2.8. Быстроходность [(м/с)Па] и габаритность [(м/с)Па] вентилятора являются критериями для оценки пригодности работы вентилятора в режиме, заданном величинами , , и частотой вращения , и служат для сравнения вентиляторов различных типов.

2.9. Безразмерными параметрами вентилятора являются коэффициенты производительности , полного и статического давления, а также потребляемой мощности .

2.10. Аэродинамические качества вентилятора должны оцениваться по аэродинамическим характеристикам, выраженным в виде графиков (черт. 2) зависимости полного и статического и (или) динамического давлений, развиваемых вентилятором, потребляемой мощности полного и статического КПД от производительности при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения его рабочего колеса. На графиках должны быть указаны размерности аэродинамических параметров.

Допускается построение аэродинамических характеристик при частоте вращения, изменяющейся в зависимости от производительности, с указанием этой зависимости () на графике. Вместо кривых и на графике может указываться кривая динамического давления вентилятора.

Допускается при построении аэродинамической характеристики кривые ; и не указывать.

2.11. Аэродинамические характеристики вентилятора должны строиться по данным аэродинамических испытаний, проведенных в соответствии с ГОСТ 10921, с указанием одного из четырех типов присоединения вентилятора к сети (А, В, С, D), принятого по табл. 2.

Типовой следует считать характеристику, полученную при испытаниях по типу присоединения вентилятора к сети А.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: